

ACIC 2021

Problem Framing: Tracking thousands of plants

- Plant Science perspective
 - Interested in assessing phenotypic variation
 - Can we use our data to predict yield?
 - Can we use our data to improve crop performance?
 - What other data and/or ML approaches will allow us to understand plant growth?

Problem Framing: Tracking thousands of plants

- Data Science perspective
 - Multiple data time points throughout growing season
 - Lots of training data = good!
 - Image processing techniques have been unsuccessful
 - Shift to ML methods

Problem Framing: Tracking thousands of plants

Data Collection: Converting raw data into gold

Let's label some images: <u>Labelbox</u>

In groups of 4-5:

- Export labels
- Convert JSON file to XML
- Visualize labels for quality control

Model training: The relatively easy part

Launch Notebook: Google Collab

Model training: The relatively easy part

Labeling

<u>Labelbox</u>

Machine learning

Detecto

Array/image manipulation

- O NumPy
- O OpenCV

