PhytoOracle: A scalable, modular data processing pipeline for phenomic data

Emmanuel Gonzalez, Travis Simmons, Ariyan Zarei, Michele Cosi, Nathan Hendler, Holly Ellingson, Jeffrey Demieville, Duke Pauli, Eric Lyons

Domestication of teosinte and trait gathering

Domestication of teosinte and trait gathering

Traits of interest

- Morphological
 - Plant height
- Physiological
 - Photosynthetic efficiency, reflectance, canopy temperature
- Yield
 - Ear per plant, angle of ear, kernel number, kernel firmness
- Quality of yield
 - Kernel colour, sugar content

Trait gathering has modernized

Connecting genotype to phenotype

Gene combinations interact with the internal and environment to produce phenotypes

 Optimal to study phenotypes in the environment in which they are expressed

Obtaining and extracting high-quality phenomic data

Data volume:

Max: 10 TB/day

Typical: 1.5 TB/day

Hyperspectral

Fluorescence Thermal

PhytoOracle

PhytoOracle pipeline workflow

Data flow and distributive framework

Scalability exponentially reduces data processing times

How much time would it take to process* a single season worth of RGB data (50TB) on a 4-core, regular lab computer?

55 years!

How much time would it take PhytoOracle to process* a single season worth of RGB data (50TB)?

Only 6 days!

Today's tutorial

- Running sections of PhytoOracle pipelines to extract thermal and reflectance data
- Visualizing intermediate and phenotypic trait outputs on a Jupyter Notebook

GPS errors and image stitching

- Noisy geo-references
 - Relative coordinate system
 - Delays in triggering the cameras
 - Missing images
- Naive stitching not possible
 - GPS error not uniform

Geo-correction and using GPS metadata

- Large scale image stitching using Megastitch
 - Drift and inconsistency
 - White bucket lids come to rescue!
- Solution?
 - Use noisy GPS as priors
 - Anchor Ground Control Point (GCP) lids to their known location
 - Minimize error globally

Impacts on phenotyping

Addressed problems

- Commercial software cannot stitch scanalyzer images
- Low overlap and few distinct visual features

Impacts

- Accurate plot level orthos
- Identify and match plants from different scans
- Measure phenotypes accurately

Results

通用 Loud 2.7% 2.5% 与2.9% 后移分数。 2.8.7% 1.6.1%

できることに、 できるないのできるとのできると

STATES AND TANKE OF THE PARTY O

CONTRACTOR OF THE PARTY OF

からなる はなりおくまな はないないは

Image Labeling Example

Resources

Documentation:

https://tinyurl.com/phytooracle-rtd

Containers:

https://github.com/phytooracle

Workflows:

https://github.com/LyonsLab/PhytoOracle

Data:

https://tinyurl.com/cyverse-datacommons

Orthomosaics (10% resolution):

https://tinyurl.com/bisque-orthomosaics

ArcGIS map:

https://tinyurl.com/arcgis-phytooracle

Closing Remarks

We thank the AG2PI team.

We also thank the Cyverse staff for the iRODS and virtual machine troubleshooting.

We finally thank Drs. Duke Pauli, Kobus Barnard and Eric Lyons for their support and leadership.

