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MegaStitch:
Robust Large Scale Image Stitching

Ariyan Zarei, Emmanuel Gonzalez, Nirav Merchant, Duke Pauli, Eric Lyons, and Kobus Barnard

Abstract—We address fast image stitching for large image
collections while being robust to drift due to chaining
transformations and minimal overlap between images. We
focus on scientific applications where ground truth accuracy
is far more important than visual appearance or projection
error, which can be misleading. For common large-
scale image stitching use cases, transformations between
images are often restricted to similarity or translation.
When homography is used in these cases, the odds of
being trapped in a poor local minimum and producing
unnatural results increases. Thus, for transformations up to
affine, we cast stitching as minimizing reprojection error
globally using linear least squares with a few, simple
constraints. For homography, we observe that the global
affine solution provides better initialization for bundle
adjustment compared to an alternative that initializes with a
homography-based scaffolding, and at lower computational
cost. We evaluate our methods on a very large translation
dataset with limited overlap, as well as four drone datasets.
We show that our approach is better compared to alternative
methods such as MGRAPH in terms of computational cost,
scaling to large numbers of images, and robustness to drift.
We also contribute ground truth datasets for this endeavor.

I. INTRODUCTION

AUTOMATED crop monitoring and high-throughput
phenotyping have become important research topics

both in plant sciences and in computer science [1] [2]
[3] [4] [5]. Unoccupied aerial vehicles (UAVs) and large-
scale, ground-based systems are now providing high
resolution alternatives to aerial and satellite image capture.
Thus, having accurately georeferenced image mosaics
with large fields of view encompassing all parts of
the monitored region is important for remote sensing,
automatic phenotype extraction, and crop monitoring
systems.

The fundamentals of image stitching have been well
studied and documented in computer vision. However,
there has been less effort on the challenges of image
alignment and georeferencing in large scale datasets, and
where minimal overlap of neighboring images makes
global stitching brittle. Our motivating context is assessing
how different water-stress treatments of 40, 000 individual
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plants of 240 different genotypes affect measured
phenotypic features. This requires individual plant tracking
throughout an entire growing season, across different
types of image data captured by different cameras and
sensors including RGB, Thermal and Photosystem II (PS2)
camera (a camera that measures plant tissue fluorescence
at night to determine photosynthetic capabilities). Here,
having accurately georeferenced mosaics is essential for
tracking individual plants, fusing data across sensors and
time, extracting phenotypic features, and inferring plant
performance.

In this project, sensors and cameras are mounted on a
specialized, ground-based gantry system that scans two
acres throughout the entire season day and night (see
Figure 1). Each scanned image is associated with gantry
coordinates, which have non-negligible error. This error
increase when the gantry coordinates get converted to
GPS. The RGB images need to be very high resolution and
are thus taken close to the ground (2−3.5m). As a result,
the images include large regions of soil. In addition, the
plants are aligned in uniform rows, and due to the design of
the gantry system, the images have as little as 10% overlap.
Both these attributes increase the ambiguity of visual
feature matches between image pairs. Additionally, the
orthomosaic must have a high degree of accuracy as it will
be used to track approximately 40, 000 individual plants
from 10, 000 images per day throughout the growing
season. Due to these factors, minor local errors in pairwise
image stitching can easily contribute to major errors in
estimated quantitative phenotypes. Further, images need
to be accurately aligned to absolute coordinates, and thus
to other sensor modalities and field measurements, which
is a different task than having results that are visually
appealing. Arranging this manually entails far too much
human intervention for the scale of these continuously
collected data.

Current approaches to image stitching [6] [7] [8]
[9] [10] often rely on robust pairwise image matching
typically from combining a geometry model with invariant
features (e.g., SIFT [11]) using RANSAC [12]. A
recently studied alternative [13] [14] uses on-board camera
parameter measurements to estimate the transformations,
together with a carefully tuned robust estimator to deal
with outliers, thereby obviating the need for RANSAC
and its associated costs. When working with pairwise
transformations, one can consider chaining them together
to create a large orthomosaic. However, doing so inevitably
suffers from drift (error accumulation) leading to global
inconsistencies in position. In particular, there is no reason
to expect that chains along two paths between distant
images will give the exact same transformation. This
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can be ignored to some extent if the transformations
are very accurate, as is possible if there are plenty of
pairwise feature matches due to significant image overlap.
Generally, and definitely for challenging imaging data,
there is a need for a more global approach that can make
paths consistent and make image placement more accurate.

The usual solution for improving mosaics built from
pairwise homographies is bundle adjustment (e.g. [15]),
which entails a non-linear optimization that potentially has
many local minima. As such, bundle adjustment requires
a good starting point, which might be hard to find or need
human intervention [16]. Additionally, bundle adjustment
operates on large matrices with each row representing an
equation for each of the keypoint correspondences. When
the scale of the problem is very large, this becomes a
computational bottleneck. However, there has been some
efforts to alleviate these problems by taking advantage of
inaccurate available metadata (e.g., [13] [14]). Regardless,
because of these computational challenges, one certainly
does not want to use methods designed for homography
if homography is not warranted.

In this paper we show that non-projective
transformations permit fast global solutions for
minimizing feature matching error using linear least
squares (§III). While linear least squares is not robust in
general, we are able to use it to an advantage because
we only apply it to inliers found by robust matching
(e.g., RANSAC). We demonstrate that the proposed
method works very well on five datasets, three of which
are images of an agricultural field. The one dataset,
collected by the gantry system (Figure 1), captures the
field with ∼ 6, 000 − 10, 000 very high resolution but
minimally overlapping images which are related by a
translation. The second and the third datasets image the
same field with about 450 drone images that are related
by a similarity transformation (the drone is relatively
level during image capture). The other two datasets are
drone images of a golf course and a reservoir in Colorado
available online [17].

When the images are related by a homography, instead
of initializing bundle adjustment parameters with iterative
or graph-based approximation methods (e.g., [18]), which
are prone to drift and often lead to unacceptable results, we
use the results of our proposed method (§III) to estimate
a good initialization for the bundle adjustment. More
specifically, we assume affine transformations between
the images and solve the proposed linear least squares
optimization and use the result as an initialization for
the bundle adjustment. This effectively decreases the
computation time while maintaining an acceptable level
of alignment accuracy.

II. RELATED WORK

Early progress in image stitching in computer vision
is summarized by Szeliski [19]. Image mosaicking
methods typically have four components: 1) feature
detection; 2) feature correspondence estimation; 3)
transformation estimation and global alignment; and 4)
seamless stitching and blending [20]. However, scientific
applications need accurate alignment of geo-referenced

Fig. 1: The gantry system scanning lettuce plants. Different
crops are grown under the gantry and scanned daily using
various high-resolution sensors and scanners seen hanging
below the cross beam and able to move left-to-right as the
rig moves forward and back. In the bottom right corner,
one can see a GPS marker that we use to develop ground
truth for data from this device, as well from the drone.

images, but do not necessarily need absolutely seamless
stitching. For homography transformations, a significant
step forward was using robust matching of invariant
features (e.g., SIFT [11]) under a geometry model
using RANSAC [12], as proposed by Brown and
Lowe [21], [22], and followed on by many others. Multiple
researchers (e.g., [23], [24], [25]) opted for using the
Harris-Laplacian detector [26] to detect feature points, and
some (e.g., [27], [28]) found advantages to using speeded
up robust features (SURF) [29]. To evaluate matches
within the RANSAC framework, in addition to the nearest-
neighbour based methods proposed originally, Zhao et
al. [23] considered normalized correlation, and De Cesare
et al. [24] proposed entropy and mutual information based
measures.

Different from the above methods, Xie et al. [30] used
the fast Fourier transform to estimate the displacement
between two images, and subsequently estimate the
transformation needed for stitching. And Preibishch et
al. [31] used Fourier matching together with global
optimization for translated confocal microscopy images.

Related work on orthomosaic generation from large-
scale, geo-referenced images includes Mizotin et al. [32],
who proposed a voting scheme for shift and rotation
estimation in the mosaicing of aerial images with
low overlap and significant angle rotation, Xiang et
al. [33] who emphasized the importance of using GPS
coordinates to find neighboring images to speed up
the mosaicing by avoiding matching all possible image
pairs, and Moussa et al. [34] who proposed an iterative,
region growing approach which combines using GPS
coordinates with constrained Delaunay triangulation [35]
to avoid exhaustive matching. Although some image
mosaicing challenges were addressed in the later method,
it accumulates small transformation errors in locations
distal from the center (seed) of the mosaic. Similar
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iterative methods have been proposed by others [36], [37],
[38], [39], [40].

In the case of mosaicking drone images, others have
used the positional information system (POS) to correct
drone’s attitude before performing bundle adjustment [41].
Additionally, Liu et al. [42] proposed a new approach in
which they constructed each of the projection matrices
using the POS information and separately estimated
geometric and camera parameter errors.

Finally, Ruiz et al. [18] proposed MGRAPH, which
attempts to reduce drift by using a non-linear optimization
similar to bundle adjustment. They represent the image
dataset by a minimum spanning tree (MST) computed
using pairwise matching errors, and then estimate absolute
homographies for each image with respect to a reference
by chaining the pairwise transformations along the MST
paths. These absolute homographies are refined as to
minimize the error between matched points computed
by transforming one of them to the reference image
coordinates, followed by the inverse mapping to the other
image. They cast their method in terms of homography,
although, as near as we can tell, they use similarity in
practice for their drone data. Because they explicitly seek a
globally consistent solution, we implemented their method
against which to compare our method.

In summary, there has been good progress on managing
computation, finding initial matches, iterative stitching,
and reducing computational costs assuming homography
is needed. What remains is dealing with drift in large
scale data, which we address using global optimization
for non-projective transformations, either as an appropriate
assumption for many scientific data sets, or as an
effective initialization for bundle adjustment in cases when
homography is needed.

III. ALGORITHMS

For non-projective transformations such as translation,
similarity, and affine, we can directly minimize the total
reprojection error with constrained linear least squares.
Without loss of generality, given a reference image indexed
by 0, we denote the 2 × 3 transformation that rewrites
the coordinates with respect to image i into the reference
image coordinates by T (i), and use T

(i)⊤
r for row r of this

transformation as a column vectors. We constrain T (0) to
be the identity transform, so T

(0)
1 = [1, 0, 0] and T

(0)
2 =

[0, 1, 0]. Our variables are then the stacked rows of T (i),
i.e., [T (0)⊤

1 , T
(0)⊤
2 , T

(1)⊤
1 , T

(1)⊤
2 , . . . T

(N)⊤
1 , T

(N)⊤
2 ],

where N is the number of images.
We denote the homogeneous coordinates of an arbitrary

inlier feature point in image i by p(i), and the set of pairs
of corresponding inliers for image pair i and j by Ii,j . For
an inlier pair (p(i), p(j)) ∈ Ii,j , the mapping from p(i) to
absolute coordinates should be the close to the mapping
from p(j) to absolute coordinates, i.e., T (i)p(i) ≈ T (j)p(j).
This gives an equation for each of the two transformation
rows, and we get the following dot products for the system
of equations that we will solve in the least squares sense:

p(i) • T
(i)
1 − p(j) • T

(j)
1 ≈ 0 ∀(p(i), p(j)) ∈ Ii,j

p(i) • T
(i)
2 − p(j) • T

(j)
2 ≈ 0 ∀(p(i), p(j)) ∈ Ii,j .

(1)

Solving for affine T gives us the absolute transformations
which we can use to align and warp the images into the
reference frame.

However, as discussed above, often similarity or
translation is called for, and for these cases, we need
additional constraints, and we can make additional
simplifications. In what follows, we will further index
element j in row i of Ti as Ti,j . For similarity, we augment
(1) with the constraints:

T
(◦)
1,2 = −T

(◦)
2,1 and T

(◦)
1,1 = T

(◦)
2,2 , (2)

using ◦ for i or j. Note that if we did not enforce
these constraints, unintentionally we would have solved
for affine transformation. To reduce the size of the least
squares problem, we use shared variables for T

(◦)
1,2 , T

(◦)
2,1

and T
(◦)
1,1 , T

(◦)
2,2 , negating two of the coefficients in (1) to

account for the negation in T
(◦)
1,2 = −T

(◦)
2,1 .

For translation, we can further simplify the equations
by only considering the translation parameters for the x
and y directions. This gives:

T
(i)
1,3 − T

(j)
1,3 ≈ p(i)x − p(j)x

T
(i)
2,3 − T

(j)
2,3 ≈ p(i)y − p(j)y .

(3)

This has far fewer parameters and therefore can be
solved faster. Note that in order to be robust to drift,
we need to keep using the absolute transformations T
and avoid chaining pairwise transformations. This permits
the least squares optimization to find the best parameters
considering all pairwise transformations. While it is known
that translation can be addressed with least squares [20],
this formulation has not been exploited for very large-scale
image stitching problems.

Corner point oriented translation. If we have noisy
corner point location estimates (e.g., GPS), as are available
from the gantry data collection system, we can incorporate
that information in our formulation. Incorporating these
priors is easier if we recast the above equation in terms
of corners, c

(i)
k , indexed by k where k = 1 is top-left,

k = 2 is top-right, k = 3 is bottom-left, and k = 4

is bottom-right corner of image i. We use ĉ
(i)
k for noisy

corner measurements, and assume that we have measured
σGPS which is the ratio of the standard deviation of
the point location estimates to the standard deviation of
transformation estimation. We use this ratio to inversely
weight the matrix rows for corner estimation.

Similarly, if we have a ground truth (GT) anchor
location, a(i) for image i, we want to constrain the result
so that the pixel corresponding to that anchor has that
location. We denote the constrained pixel coordinates for
a(i) by (h,w), where h counts down from the top, and
w counts rightwards from the left, in images with height
H and width W . The corner coordinates in the reference
coordinate system are then constrained by the anchor via:

4∑
k=1

ϕ(k, h, w)c
(i)
k = a(i) , (4)
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where
ϕ(1, h, w) = (1− h

H
)(1− w

W
)

ϕ(2, h, w) = (1− h

H
)(

w

W
)

ϕ(3, h, w) = (
h

H
)(1− w

W
)

ϕ(4, h, w) = (
h

H
)(

w

W
) .

(5)

rewrites anchor and keypoints locations in terms of the
four corners of the corresponding image, which are the
variables for which we are solving. This construction
works because affine transformations preserve the convex
combination (please refer to supplementary materials
(§VIII)). We use the same construct to write the
reprojection error as the difference of two convex
combinations coming from the two mappings for inlier
pairs. Finally, for translation, we ensure that the corner
points are consistent with a fixed rectangle being a
translated image in the anchoring coordinate system. Here
we constrain the corners to have the same first/second
coordinate as its horizontal/vertical neighbor (third and
forth rows of 6). This prevents rectangles from being
deformed during the optimization process. Note that for
other cases rather than translation, we do not need this
constraint.

Allowing for all sources of information, the restructured
formulation for translation is:

c
(i)
k ≈ 1

σGPS
ĉ
(i)
k ∀i, k (noisy corners)

4∑
k=1

ϕ(k, h, w)c
(i)
k = a(i) (fixed anchors)

ci1,y − ci2,y = 0, ci3,y − ci4,y = 0, (translation)

ci1,x − ci3,x = 0, ci2,x − ci4,x = 0 (translation)
4∑

k=1

ϕ(k, p(i)x , p(i)y ) c
(i)
k −

4∑
k=1

ϕ(k, p(j)x , p(j)y ) c
(j)
k ≈ 0

∀(p(i), p(j)) ∈ Ii,j . (reprojection)

(6)

We can further improve the efficiency for translation by
directly using the initial transformation estimates instead
of simply using them to get inliers. Here, each overlapping
image pair contributes a pair of equations, rather than
twice the number of inliers we choose to use. Hence the
least squares problem is significantly reduced. While this
results in a larger reprojection error, we find (Table II) the
difference is not significant, and this more efficient method
provides better ground truth accuracy.

For each overlapping image pair i and j, we form the
following equations:

cix − cjx ≈ T̂ (i,j)
x (translation in x)

ciy − cjy ≈ T̂ (i,j)
y (translation in y)

c
(i)
k ≈ 1

σGPS
ĉ
(i)
k ∀i, k (noisy corners)

c(i)x = a(i)x − αxw (fixed anchors in x)

c(i)y = a(i)y − αyh , (fixed anchors in y)

(7)

where cix and ciy are the variables corresponding
respectively to the x and y coordinates of the upper-left

corner of the image i, T̂ (i,j)
x and T̂

(i,j)
y are the estimated

x and y pairwise transformation between image i and j,
and αx, αy are the ratio of the GPS field of view over
the width and height of the images respectively. Using
these linear least squares equations, we can solve for the
upper-left corner of each image and calculate the other
corners afterwards. This approach uses much less memory
and CPU but is not linearly generalizable to other more
complicated transformations such as similarity, affine and
homography.

Lastly, for the case of projective transformations, instead
of initializing the parameters of the bundle adjustment
using naive approaches that are susceptible to drift, one
can use the proposed method to solve for an affine
approximation of the transformations and use it as the
starting point of the non-linear bundle adjustment to speed
up the convergence.

IV. IMPLEMENTATION

We implemented our proposed methods in Python
(version 3.6) and we used the Scipy optimization library
(version 1.4.1) to solve the least squares problems
(“lsq linear” for linear systems, and “least squares” for
non-linear systems, specifically for bundle adjustment and
for our implementation of MGRAPH [18]). Both functions
implement the Trust Region Reflective method [43]. For
non-linear least squares, we derived the Jacobian matrix
analytically for computational efficiency. We also used
OpenCV (version 3.4.2) for extracting SIFT keypoints,
finding matches, and estimating transformations. However,
we implemented a RANSAC-based method for estimating
translation parameters to enable additional optimizations.

We used the GPS coordinates associated with the drone
images to find the nearest neighbors in order to reduce
the number of pairwise transformations to be estimated.
However, for the experiments on the gantry images, we
also used them as priors on the coordinates of the corners
as described in equations 6 and 7. Using these associated
GPS coordinates, for each image we selected its k nearest
neighbors using the following approach. For each pair
of neighboring images, we extracted the SIFT keypoint
locations and descriptors and computed putative matches
using the two nearest neighbours in the descriptor space,
dropping second neighbours whose score was not less
than 80% of the first one as used by many others (e.g.,
[44], [45]). We used k = 4 and k = 8 for the drone
and gantry experiments respectively. Using these pairs of
keypoints, we estimated transformations of the appropriate
type using RANSAC and saved them alongside with the
inliers for subsequent use. Following Ruiz et al. [18], to
reduce computation time and memory usage we used only
the top 20 inliers to form the equations in all variations of
our methods. Note that in equations 6 and 7 σGPS is used
to properly incorporate the noisy estimates of the corners
in the equations. The accuracy of these estimates is given
by 1

σGPS
. We calculated σGPS by manually validating and

revising (as needed) one of the gantry scans after being
geo-corrected by our proposed method. More specifically,
after the manual revision, the pairwise transformations
are calculated using the accurate relative locations of the
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images. Comparing these results against the estimated
transformations by RANSAC enabled measuring σGPS .

All of our experiments were performed on a system with
Intel(R) Xeon(R) CPU X7560 and 882 GB of RAM.

V. EVALUATION METHODOLOGY

Datasets. We evaluated our proposed method on
datasets of agricultural images captured by UAVs and
the field gantry machine described above as well as
two drone datasets from the DroneMapper website [17]
(also used by Ruiz et al. [18]). The subject of the
agricultural image datasets was a two acre research field
crop where different plants were grown and monitored
during different growing seasons throughout the year.
Accurate orthomosaics are needed to closely monitor
different phenotypes of individual crops growing over
time. One set of agricultural images was captured by a
DJI Phantom 4 v2 drone (quad-copter) which flies over
the field and takes about 450 images on average from
the field in each scan and it remains almost level during
the flight. Another set of agricultural images was taken
by cameras on board the gantry machine scanning the
field with cameras near the ground to capture detailed
features of the crops. The gantry system takes 6000−9000
images on each scan of the field at a resolution of
0.3 mm per pixel. The resulting images have very low
overlap (∼ 9% vertically and ∼ 30% horizontally) and
few distinct visual features which pose a challenge to
the image stitching problem. The other two datasets are
images of a reservoir (Gregg) and a golf course (Back
9 Golf Course) in Colorado which were captured by a
drone. The Gregg and Golf Course datasets consist of
187 and 664 images respectively, and are available in the
DroneMapper website.

Ground truth and evaluation measures. Given the
scientific requirements of our setting, we needed to
evaluate stitching with respect to ground truth locations.
For this purpose, in the agricultural field we had ground
control points (GCPs) installed on specific locations that
were detected and identified in the images. For the Golf
Course and Gregg datasets we found the imaged regions
on Google Maps and manually selected a number of
distinct locations as GCPs, noting the GPS locations
provided by Google Maps. We evaluated all methods
using four different measures: GCP root mean square error
(RMSE), projection RMSE, normalized projection RMSE,
and optimization time.

Computing GCP RMSE for the experiments with the
gantry data is straight-forward as we include the rough
estimates of the image corner GPS coordinates, as well
as a single GCP anchor point in our equations (6,7),
leading to orthomosaics in GPS units. A single anchor
point suffices to correct for any global error assuming
translation, but the evaluation does not depend on this.

For drone data we estimate the transformation between
the reference image coordinate system and the GPS
using all the GCPs to compute either a similarity or
a homography as appropriate. We then transform the
GCPs into the GPS space and calculate the root mean
squared error between these transformed coordinates and

the known locations of the GCPs. We use the following
equation to calculate the distance in meters between two
given points:

a = sin2(
P 1
Y − P 2

Y

2
) + cos(P 1

Y )× cos(P 2
Y )×

sin2(
P 1
X − P 2

X

2
)

c = 2× atan2(
√

(a),
√
(1− a))

d = 6371× 103 × c

(8)

where P 1 and P 2 are the two GPS coordinates with
degree values converted to radians (X and Y are int the
direction of longitude and latitude respectively) and 6371×
103 is the earth radius. This is called the Haversine formula
[46].

Projection RMSE, which measures how well points in
overlapping areas align, is commonly used to evaluate
stitching and alignment methods, and hence we report it.
However, projection RMSE does not take into account
the arbitrary deformations of the final mosaic, and so
we also report normalized projection RMSE which is
similarly computed after transforming to GPS coordinates
as described above for computing the GCP RMSE
measure.

VI. RESULTS

We evaluated our method on the drone datasets
using similarity as a solitary alignment method, as
well as assuming that an affine transformation is
a good initialization for the bundle adjustment. We
compared these two variants to our implementation of
MGRAPH [18]). Quantitative results are provided in
Table I and qualitative results are shown in Figures 2, 4,
and 5.

As we discussed briefly, the minor misalignment errors
in pairwise matching of images may accumulate and
cause drift. As a result of that, two different sequences
of chaining pairwise transformations may not result in
the same absolute transformation as we would expect.
Moreover, the non-linear optimization used in methods
like MGRAPH are prone to local minimum trappings
that may cause further global misalignment, and unnatural
deformations and warps. As illustrated in the mosaics
in Figure 2, the drift caused by a bad initialization
in MGRAPH unnaturally warps the mosaic. In this
case, although the keypoints might be nicely aligned as
indicated by the projection RMSE in Table I, the ground
truth GPS location is inaccurate as both the qualitative
and quantitative results suggest. This example supports our
focus on GCP RMSE, and normalized projection RMS as
a better proxy.

For the two drone datasets of the agricultural field,
MegaStitch with similarity yields the best results. For
the Gregg II and Golf Course datasets homography
is called for. For Gregg II, MegaStitch with affine as
initialization for the bundle adjustment produces the best
results. By contrast, the MGRAPH initialization is not
good, and the optimization process rapidly finds a poor
local minimum, explaining the very fast optimization
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Measure Methods
Datasets (Drone)

Ag.
Field

Lettuce

Ag.
Field

Sorghum

Golf
Course

Gregg II

GCP RMSE
(meters)

Pix4DMapper 0.25 1.39 2.32 0.25

MegaStitch Similarity 0.15 0.49 29.96 10.77

MegaStitch Affine + Bndl. Adj. 1.63 10.31 9.33 0.75

MGRAPH 8.75 6.83 6.93 24.02

Projection
RMSE (pixels)

MegaStitch Similarity 0.69 0.68 1.15 1.96

MegaStitch Affine + Bndl. Adj. 0.57 4.35 1.40 1.37

MGRAPH 0.72 0.85 1.69 8145.37

Normalized
Projection

RMSE
(meters)

MegaStitch Similarity 0.02 0.02 0.63 0.60

MegaStitch Affine + Bndl. Adj. 0.02 0.36 0.77 0.46

MGRAPH 0.09 0.04 1.00 6831.92

Optimization
Time

MegaStitch Similarity 2m 24s 2m 59s 5m 23s 9s

MegaStitch Affine + Bndl. Adj. 13m 37s 4m 1s 14m 50s 1m 16s

MGRAPH 10m 36s 4m 47s 37m 39s 16s

TABLE I: Results of our proposed method and MGRAPH on four drone datasets. Qualitative results are shown in
figures 2,4, and 5. GCP RMSE and normalized projection RMSE are distances in the GPS coordinate system (meters)
and projection RMSE are distances in the reference image coordinate system (pixels). On the agricultural field drone
datasets MegaStitch with similarity produces the best GCP RMSE, normalized projection error and optimization time.
For the Golf Course dataset, MegaStitch with affine and bundle adjustment produces comparable results to MGRAPH
(GCP RMSE is slightly worse and projection error is slightly better), but three times faster. For the Gregg II dataset,
MGRAPH quickly goes to a poor local minimum, with accuracy being orders of magnitude worse than MegaStitch
requiring pruning outliers to show part of the mosaic in Figure 5. Also included in the table is a result using the
closed-source commerical software, Pix4DMapper, which cannot handle the gantry data, but does well on the drone
datasets. Because Pix4DMapper only runs on Windows platforms, we are not able to provide meaningfull run time
results.

Methods
Performance on the Gantry datasets

GCP
RMSE

Projection
RMSE

Optimization
Time

Keypoint-based 0.20 0.01 5h 23m 48s

RANSAC
Transformations

0.18 0.01 13m 42s

TABLE II: Results for the two methods for gantry data
assuming translation. MegaStitch expressed in terms of
translation parameters estimated by RANSAC (7) yields
a better GCP RMSE result than raw keypoints (6) in a
considerably shorter period of time. Note that the GCP
and Projection RMSE scores are distances in meters.

time. Further inspection reveals that the bulk of the
mosaic, which includes all GCPs, is visually reasonable
(Figure 5), but to make this figure we had to remove
outliers. Specifically, we removed the top and bottom
5% of mapped image sizes. These outliers partly explain
the quantitative results being several orders of magnitude
worse than those for MegaStitch.

For the Golf Course images, MGRAPH does not run
into these issues, and does slightly better then MegaStitch
on GCP RMSE, and slightly worse on projection RMSE,
which we attribute to projection RMSE being closer to
what MegaStitch actually optimizes. However, MGRAPH

runs three times slower compared to MegaStitch which
undermines its gain in GCP RMSE.

We also evaluated our method on the gantry images.
Since the gantry has only two perpendicular axes
of motion, images are connected by translations. We
incorporated the initial noisy locations of each image in
the equations. One of the GCPs was also included in
the equations as an anchor point. We evaluated methods
corresponding to equations 6 and 7 on the gantry images.
The quantitative results are presented in Table II and the
qualitative results are illustrated in Figure 3. Note that
the illumination differences and shadows did not have any
adverse effect on the ability of our proposed method to
align and geo-correct the images as SIFT is somewhat
invariant to illumination differences. However, shadow
artifacts are present in our final images. However, since the
geo-corrected images are used for downstream scientific
analysis (such as measuring greenness indices), we did
not apply pixel blending or seamless stitching. These
processing steps could be added to our method as needed
by other applications.

We find that optimizing with the translation parameters
(7) is substantially faster than the raw keypoint based
projection minimization (6). This second approach also
consumes 10 times more memory since it takes into
account a large subset of keypoint matches rather than
the robustly estimated translation parameters. While this
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Fig. 2: Mosaics generated by MegaStitch and MGRAPH
for the lettuce drone dataset. The sorghum dataset yields
similar results. Red circles are the GCP locations, and
green squares are their estimated locations. MegaStitch
with similarity (left) is the best at estimating GCP location.
On the other hand, the MGRAPH mosaic (right) exhibits
drift which is not repaired by the optimization, and the
final result has unwanted warp and global inconsistency.
By contrast, bundle adjustment assuming homography
from an affine initialization (center), does not have these
issues on this data.

Fig. 3: Mosaic generated by MegaStitch on the gantry
dataset based on the intermediate translations found using
RANSAC (7). The keypoint-based method yields visually
indistinguishable results, but uses about 10 times the
resources. The scale of this data set (≈ 10, 000 images)
defeated multiple alternative methods, motivating this
work.

Fig. 4: Mosaics generated by MegaStitch using affine
followed by bundle adjustment (top) and the MGRAPH
(bottom) on the drone images of the Golf Course dataset.
Red circles are the GCP locations and green squares are
their estimated locations. The two results are similar. As
reported in Table I, MGRAPH does a bit better on GCP
RSME, and MegaStitch does a bit better on projection
RMSE.

is the case for all the general bundle adjustment methods,
translation affords the alternative approach. The accuracies
of the two methods are similar, with the second (faster)
approach being slightly better on GCP RMSE, and slightly
worse on projection RMSE, likely because projection
RMSE is closer to what the raw keypoint method is
optimizing.

VII. CONCLUSION

We contribute methods for large scale image alignment
for scientific monitoring applications where accuracy
with respect to ground truth is critical. Our approach
is more robust and significantly faster than alternatives.
We use inliers from pairwise transformations directly for
global least squares solutions, as for many applications
non-projective transformations suffice. Moreover, we
found that non-projective alignment using non-linear
optimization is sensitive to initialization, and that the
globally valid approximate solution from MegaStitch can
efficiently provide a good initialization. We also developed
a large-scale ground truth dataset for this task which
is available along with our code at https://github.com/
ariyanzri/MegaStitch.

https://github.com/ariyanzri/MegaStitch
https://github.com/ariyanzri/MegaStitch
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Fig. 5: Mosaics generated by MegaStitch using affine
followed by bundle adjustment (top) and MGRAPH
(bottom) on the Gregg II drone dataset. Red circles are
the GCP locations and green squares are their estimated
locations. For the MGRAPH mosaic we removed a few
images since the optimization falls into a such a bad
local minimum that the inlier results are hard to inspect
otherwise. MegaStitch provides a good initialization for
the bundle adjustment, and does much better overall.
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