Hands-On Machine Learning with Agricultural Applications

Ariyan Zarei¹, Emmanuel Gonzalez²

¹Department of Computer Science, University of Arizona, Tucson, USA ²School of Plant Sciences, University of Arizona, Tucson, USA

Problem Framing: Tracking thousands of plants

- Plant Science perspective
 - Quantitative and predictive focus
 - Can we use data to predict yield?
 - Can we use data to improve crop performance under drought?
 - Can we identify natural and/or induced variation?
 - What ML algorithms can be used and/or combined?

Problem Framing: Tracking thousands of plants

- Data Science perspective
 - Multiple data time points throughout growing season
 - Lots of training data = good!
 - Other image processing techniques have been unsuccessful
 - Shift to ML methods

Problem Framing: Tracking thousands of plants

Data Collection: Converting raw data into gold

Machine Learning Tasks

- Supervised
 - Regression
 - Classification
 - Localization
 - Object Detection
 - Segmentation
 - Semantic Segmentation
 - Instance Segmentation
- Unsupervised
 - Clustering

Neural Networks and Computer Vision

- Visual Perception for Computer
- Learn discriminative models for different CV tasks
- Inspired by brain Neural System
- Adjust parameters by penalizing errors

Neural Networks and Computer Vision

Data Preparation: Labeling is a crucial step

Web-based

Local, graphical user interface

Data Preparation: Label quality matters

Data Preparation: Interpreting labels

Model training: The relatively easy part

Object detection: here

Semantic segmentation: here